

MPJ Express: An Implementation of MPI in

Java
Linux/UNIX/Mac User Guide

Version: 0.35 (Beta Release)

Aamir Shafi, Bryan Carpenter, Mark Baker

aamir.shafi@seecs.edu.pk, bryan.carpenter@port.ac.uk, mark.baker@computer.org
26

th
 January, 2010

mailto:aamir.shafi@seecs.edu.pk
mailto:bryan.carpenter@port.ac.uk
mailto:mark.baker@computer.org

Table of Contents

1 Introduction ... 3

1.1 Configurations ... 3

1.1.1 Multicore configuration .. 3

1.1.2 Cluster configuration .. 4

2 Getting Started with MPJ Express ... 5

2.1 Pre-requisites .. 5

2.2 Running MPJ Express in the Multi-core Configuration ... 5

2.3 Running MPJ Express in the Cluster Configuration ... 7

2.3.1 Cluster Configuration with niodev ... 7

2.3.2 Cluster Configuration with mxdev ... 9

3 MPJ Express Debugging..10

3.1 The mpjrun Script .. 10

3.2 Core Library ... 10

3.3 MPJ Express Daemons (Cluster configuration only) ... 10

3.3.1 Step One: Modifying the wrapper.conf file ... 11

3.3.2 Step Two: Modifying MPJDaemon.java file ... 11

Additional Optional Information: Running daemons in console mode on compute nodes 11

4 Known Issues and Limitations ..11

5 Contact and Support ..14

6 Appendices...15

Appendix A: Running MPJ Express without the runtime (manually) .. 15

Appendix B: Changing protocol limit switch ... 17

Appendix C: MPJ Express Testsuite ... 17

1 Introduction

MPJ Express is a reference implementation of the mpiJava 1.2 API, which is an MPI-like API

for Java defined by the Java Grande forum. The mpiJava 1.2 API is the Java equivalent of the

MPI 1.1 specification document (http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html).

This release of the MPJ Express software contains the core library and the runtime infrastructure.

The software also contains a comprehensive test suite that is meant to test the functionality of

various communication functions.

MPJ Express is a message passing library that can be used by application developers to execute

their parallel Java applications on compute clusters or network of computers. Compute clusters is

a popular parallel platform, which is extensively used by the High Performance Computing

(HPC) community for large scale computational work. MPJ Express is essentially a middleware

that supports communication between individual processors of clusters. The programming model

followed by MPJ Express is Single Program Multiple Data (SPMD).

Although MPJ Express is designed for distributed memory machines like network of computers

or clusters, it is possible to efficiently execute parallel user applications on desktops or laptops

that contain shared memory or multicore processors.

The MPJ Express software can be configured in two ways. The first configuration—known as

the Multicore Configuration—is used to execute MPJ Express user programs on laptops and

desktops. The second configuration—known as the Cluster Configuration—is used to execute

MPJ Express user programs on clusters or network of computers.

1.1 Configurations

The MPJ Express software can be configured to work on clusters (network of computers) or on

laptops/desktops (multicore processors).

1.1.1 Multicore configuration

The multicore configuration is meant for users who plan to write and execute parallel Java

applications using MPJ Express on their desktops or laptops—typically such hardware contains

shared memory and multicore processors. In this configuration, users can write their message

passing parallel application using MPJ Express and it will be ported automatically on multicore

processors. We envisage that users can first develop applications on their laptops and desktops

using multicore configuration, and then take the same code to distributed memory platforms

http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html

including clusters. Also this configuration is preferred for teaching purposes since students can

execute message passing code on their personal laptops and desktops. It might be noted that user

applications stay the same when executing the code in multicore or cluster configuration.

Under the hoods, the MPJ Express library starts a single thread to represent MPI process. The

multicore communication device uses efficient inter-thread mechanism.

Figure 1: MPJ Express Multicore Configuration Targets the Shared Memory and Multicore Processor Laptops and

Desktops

1.1.2 Cluster configuration

The cluster configuration is meant for users who plan to execute their parallel Java applications

on distributed memory platforms including clusters or network of computers. Application

developers can opt to use either of the two communication devices in the cluster configuration:

the communication devices including Java New I/O (NIO) device or Myrinet device.

1. Java New I/O (NIO) device driver known as niodev

2. Myrinet device driver known as mxdev

The Java NIO device driver (also known as niodev) can be used to execute MPJ Express

programs on clusters or network of computers. The niodev device driver uses Ethernet-based

interconnect for message passing. On the other hand, many clusters today are equipped with

high-performance low-latency networks like Myrinet. MPJ Express also provides a

communication device for message passing using Myrinet interconnect—this device is known as

mxdev and is implemented using the Myrinet eXpress (MX) library by Myricom. These

communication drivers can be selected using command line switches.

As an example, consider a cluster or network of computers shown in Figure 2 that shows eight

compute nodes connected to each other via private interconnect. The MPJ Express cluster

configuration will start one MPJ Express process per node, which communicates to each other

using message passing.

2 Getting Started with MPJ Express

This section shows how MPJ Express programs can be executed in the multicore and cluster

configuration

2.1 Pre-requisites

1. Java 1.5 (stable) or higher

2. Apache ant 1.6.2 or higher (For those who are interested in Compiling source code)

3. Perl (Optional): MPJ Express needs Perl for compiling source code because some of the

Java code is generated from Perl templates. The build file will generate Java files from

Perl templates if it detects perl on the machine. It is a good idea to install Perl if you want

to do some development with MPJ Express.

2.2 Running MPJ Express in the Multi-core Configuration

This section outlines steps to execute parallel Java programs in the multicore configuration.

4. Download MPJ Express and unpack it

Figure 2: MPJ Express Cluster Configuration Targets the Distributed Memory Platforms Including

Clusters and Network of Computers

5. Set MPJ_HOME and PATH variables

a. export MPJ_HOME=/path/to/mpj/

b. export PATH=$PATH:$MPJ_HOME/bin

These lines may be added to “.bashrc” file. However make sure that the shell in which

you are setting variables is the „default‟ shell. For example, if your default shell is „bash‟,

then you can set environment variables in .bashrc. If you are using „tcsh‟ or any other

shell, then set the variables in the respective files.

6. Create a new working directory for MPJ Express programs. This document assumes that

the name of this directory is mpj-user.

7. Compile the MPJ Express library (Optional): cd $MPJ_HOME; ant

8. Running test cases

a. Compile (Optional): cd $MPJ_HOME/test;ant

b. Execute: mpjrun.sh -np 2 -jar $MPJ_HOME/lib/test.jar

9. Write Hello World MPJ Express program and save it as HelloWorld.java

10. Compile: javac -cp .:$MPJ_HOME/lib/mpj.jar HelloWorld.java

11. Execute: mpjrun.sh -np 2 HelloWorld

12. JVM arguments: JVM arguments may be specified to the mpjrun script that passes these

directly to the executing MPJ Express processes. For example, the following command

modifies the JVM heap size: mpjrun.sh -np 2 -Xms512M HelloWorld

13. Application Arguments: Users may pass arguments to their parallel applications by

specifying them after "-jar <jarname>" or "classname" in the mpjrun script:

import mpi.*;

public class HelloWorld {

public static void main(String args[]) throws Exception {

 MPI.Init(args);

 int me = MPI.COMM_WORLD.Rank();

 int size = MPI.COMM_WORLD.Size();

 System.out.println("Hi from <"+me+">");

 MPI.Finalize();

 }

}

a. The user may pass three arguments “a”, “b”, “c” to the application as follows:
mpjrun.sh -np 2 HelloWorld a b c

b. Application arguments can be accessed in the program by calling the String[]

MPI.Init(String[] args) method. The returned array stores user arguments

[a,b,c].

2.3 Running MPJ Express in the Cluster Configuration

This section outlines steps to execute parallel Java programs in the cluster configuration with two

communication device drivers including niodev and mxdev.

2.3.1 Cluster Configuration with niodev

1. Download MPJ Express and unpack it

2. Set MPJ_HOME and PATH variables

a. export MPJ_HOME=/path/to/mpj/

b. export PATH=$PATH:$MPJ_HOME/bin

These lines may be added to “.bashrc” file. However make sure that the shell in which

you are setting variables is the „default‟ shell. For example, if your default shell is „bash‟,

then you can set environment variables in .bashrc. If you are using „tcsh‟ or any other

shell, then set the variables in the respective files.

3. Create a new working directory for MPJ Express programs. This document assumes that

the name of this directory is mpj-user.

4. Write a machines file stating machine name, IP addresses, or aliases of the nodes where

you wish to execute MPJ Express processes. Save this file as 'machines' in mpj-user

directory. This file is used by scripts like mpjboot, mpjhalt, mpjrun.bat and mpjrun.sh to

find out which machines to contact.

Suppose you want to run a process each on 'machine1' and 'machine2', then your

machines file would be as follows

machine1

machine2

Note that in real world, 'machine1' and 'machine2' would be fully qualified names,

IP addresses or aliases of your machine

5. Start daemons: mpjboot machines .This should work if $MPJ_HOME/bin has been

successfully added to $PATH variable. This script will SSH into each of the machine listed

in machines file, change directory to $MPJ_HOME/bin, and execute mpjdaemon start

command to start the daemon.Each daemon produces a MPJ-

Daemon<machine_name>.pid file in $MPJ_HOME/bin directory. Each daemon also

produces a log file named daemon-<machine_name>.log in $MPJ_HOME/logs directory.

6. Compile the MPJ Express library (Optional): cd $MPJ_HOME; ant

7. Running test cases

a. Compile (Optional): cd $MPJ_HOME/test;ant

b. Execute: mpjrun.sh -np 2 –dev niodev -jar $MPJ_HOME/lib/test.jar

8. Write Hello World MPJ Express program and save it as HelloWorld.java

9. Compile: javac -cp .:$MPJ_HOME/lib/mpj.jar HelloWorld.java

10. Execute: mpjrun.sh -np 2 –dev niodev HelloWorld

11. Stop the daemons: mpjhalt machines

12. JVM arguments: JVM arguments may be specified to the mpjrun script that passes these

directly to the executing MPJ Express processes. For example, the following command

modifies the JVM heap size: mpjrun.sh -np 2 –dev niodev -Xms512M HelloWorld

13. Application Arguments: Users may pass arguments to their parallel applications by

specifying them after "-jar <jarname>" or "classname" in the mpjrun script:

a. The user may pass three arguments “a”, “b”, “c” to the application as follows:
mpjrun.sh -np 2 –dev niodev HelloWorld a b c

b. Application arguments can be accessed in the program by calling the String[]

MPI.Init(String[] args) method. The returned array stores user arguments

[a,b,c].

import mpi.*;

public class HelloWorld {

public static void main(String args[]) throws Exception {

 MPI.Init(args);

 int me = MPI.COMM_WORLD.Rank();

 int size = MPI.COMM_WORLD.Size();

 System.out.println("Hi from <"+me+">");

 MPI.Finalize();

 }

}

2.3.2 Cluster Configuration with mxdev

Under the cluster configuration, the MPJ Express software also works on Myrinet based clusters.

For this purpose, MPJ Express has a communication device that runs on the top of Myrinet

eXpress (MX) library. Steps for compiling and executing user applications are same as outlined

in section 2.3.1. The following steps must be performed additionally to use MPJ Express on

Myrinet:

1. Export the MX_HOME variable. Assuming the Myrinet eXpress (MX) dirver is in /opt/mx,

the variable is exported as follows:

 export MX_HOME=/opt/mx

2. Edit build.xml (in $MPJ_HOME) and change the following line:

<target name="all" depends="compile,jars,java-docs,clean" >

to

 <target name="all" depends="compile,mxlib,jars,java-docs,clean" >

Note that we have added mxlib in the value of "depends" attribute. Being in $MPJ_HOME

directory, run the command "ant". You will see some funny warning messages from gcc

but things will work. The native libraries *.so and JAR files are produced in

$MPJ_HOME/lib directory.

3. Now write machines file. Basically for this, run "mx_info" command in your terminal

(assuming $MX_HOME/bin is in the $PATH variable) you'll get something like this:

MX Version: 1.1.7rc3cvs1_1_fixes

MX Build: @indus1:/opt/mx2g-1.1.7rc3 Thu May 31 11:03:00 PKT 2007

2 Myrinet boards installed.

The MX driver is configured to support up to 4 instances and 1024 nodes.

[..]

ROUTE COUNT INDEX MAC ADDRESS HOST NAME P0

----- ----------- --------- ---

0) 00:60:dd:47:ad:7c indus1:0 1,1

1) 00:60:dd:47:ad:68 indus4:0 1,1

[..]

Depending upon the machines having Myrinet, write your machines file

4. The device can be used by executing:

mpjrun.sh -np 2 -dev mxdev -Djava.library.path=$MPJ_HOME/lib HelloWorld

This command is assuming the Myrinet NICs with id 0 are used, this may be changed

by using the mpjrun switch called "-mxboardnum"

3 MPJ Express Debugging

This section shows how to debug various modules of the MPJ Express software. It is possible to

debug MPJ Express on three levels:

1. The mpjrun Script: This script allows bootstrapping MPJ Express programs in cluster of

multicore configuration.

2. Core Library: Internals of the MPJ Express Software

3. MPJ Express Daemons: While running the cluster configuration, daemons execute on

compute nodes and are responsible for starting and stopping MPJ Express processes

when contacted by the mpjrun script.

3.1 The mpjrun Script

To turn ON debugging for the mpjrun script, follow these steps:

1. Edit $MPJ_HOME/src/runtime/starter/MPJRun.java and change the value of static

boolean DEBUG flag to true

2. Recompile the code: cd $MPJ_HOME ; ant

3. The mpjrun script relevant log file is $MPJ_HOME/logs/mpjrun.log file

3.2 Core Library

To turn ON debugging for the core library, follow these steps:

1 Edit $MPJ_HOME/src/mpi/MPI.java and change value of static boolean DEBUG flag to true

2 Recompile the code: cd $MPJ_HOME ; ant

3 If the total number of MPJ Express processes is two, then the relevant log files will be

$MPJ_HOME/logs/mpj0.log and $MPJ_HOME/logs/mpj1.log for processes 0 and 1

respectively.

3.3 MPJ Express Daemons (Cluster configuration only)

The MPJ Express daemons running on compute nodes can be debugged in two steps outlined

below:

3.3.1 Step One: Modifying the wrapper.conf file

1. Edit $MPJ_HOME/conf/wrapper.conf file.

2. Change the value of wrapper.logfile.loglevel from "NONE" to "DEBUG".

3. Now the output of mpjboot, mpjhalt, and other daemon activities can be seen in

$MPJ_HOME/logs/wrapper.log file. This information is pretty useful for diagnosing and

fixing daemons errors.

3.3.2 Step Two: Modifying MPJDaemon.java file

1. Edit $MPJ_HOME/src/runtime/daemon/MPJDaemon.java file.

2. Change the value of static boolean DEBUG flag to true

4 Recompile the code: cd $MPJ_HOME ; ant

3. Now log files can be seen in $MPJ_HOME/logs/daemon-<machine_name>.log file.

Additional Optional Information: Running daemons in console mode on compute nodes

For debugging purposes, sometimes it is useful to run the daemons in console mode on compute

nodes. This can be achieved in the following way:

1. cd $MPJ_HOME/bin

2. Execute ./mpjdaemon_linux_x86_32 . Here we are starting the daemon on a 32 bit x86

processor. Choose the appropriate script for your machine.

4 Known Issues and Limitations

A list of known issues and limitations of the MPJ Express software are listed below.

1. There is a known (up to some extent) problem on Windows and Solaris that results in

hanging MPJ processes. Normally this will be observed when MPJ test-cases will hang,

as result, not completing or throwing any error message.

We partially understand the problem but if some user encounters this problem, we would

request some more debugging information. The required information can be obtained as

follows. Edit $MPJ_HOME/src/xdev/niodev/NIODevice.java and goto line 3693 and

uncomment the line "ioe1.printStackTrace() ;". The line 3693 is in the MPJ Express

release 0.34 and it might change in the future. The general code snippet is like this:

 catch (Exception ioe1) {

 if(mpi.MPI.DEBUG && logger.isDebugEnabled()) {

 logger.debug(" error in selector thread "

+ ioe1.getMessage()); }

//ioe1.printStackTrace() ;

 } //end catch(Exception e) ...

 if(mpi.MPI.DEBUG && logger.isDebugEnabled()) {

 logger.debug(" last statement in selector thread"); }

 } //end run()

 }; //end selectorThread which is an inner class

As a result now, when test-cases are executed again, users will see stacks periodically.

Most of these are related to socket closed exceptions that are normal. If the code hangs

now, the latest stack trace that is not about socket being closed is perhaps the reason of

this hanging behavior. We would request the users to kindly email us the output so that

we can fix the problem. A stack trace that leaves MPJ Express hanging on Solaris is as

follows:

java.nio.channels.CancelledKeyException

at sun.nio.ch.SelectionKeyImpl.ensureValid(SelectionKeyImpl.java:55)

at sun.nio.ch.SelectionKeyImpl.readyOps(SelectionKeyImpl.java:69)

at java.nio.channels.SelectionKey.isAcceptable(SelectionKey.java:342)

at xdev.niodev.NIODevice$2.run(NIODevice.java:3330)

at java.lang.Thread.run(Thread.java:595)

2. Some users have noticed that it takes a long time to bootstrap MPJ Express processes.

For example,

user@machine:~/mpj-user> mpjrun.sh -np 6 -jar $MPJ_HOME/lib/test.jar

16:15:43.400 EVENT Starting Jetty/4.2.23

16:15:43.415 EVENT Started HttpContext[/]

16:15:43.419 EVENT Started SocketListener on 0.0.0.0:15000

16:15:43.419 EVENT Started org.mortbay.http.HttpServer@23ac23ac

16:15:43.420 EVENT Starting Jetty/4.2.23

16:15:43.420 EVENT Started HttpContext[/]

16:15:43.421 EVENT Started SocketListener on 0.0.0.0:15001

16:15:43.421 EVENT Started org.mortbay.http.HttpServer@50265026

[pause for a minute or two]

Starting process <0> on Starting process <1> on

[pause for a minute or two]

Starting process <2> on Starting process <3> on

[pause for a minute or two]

Starting process <4> on Starting process <5> on

[job starts]

Thanks to Andy Botting who is one of the users that identified this problem. This problem is

perhaps related to name resolution and we are currently working to fix it.

3. The merge operation is implemented with limited functionality. The processes in local-

group and remote-group *have* to specify 'high' argument. Also, the value specified by

local-group processes should be opposite to remote-group processes.

4. Any message sent with MPI.PACK can only be received by using MPI.PACK as the datatype.

Later, MPI.Unpack(..) can be used to unpack different datatypes

5. Using 'buffered' mode of send with MPI.PACK as the datatype really does not use the

buffer specified by MPI.Buffer_attach(..) method.

6. Cartcomm.Dims_Create(..) is implemented with limited functionality. According to the

MPI specifications, non-zero elements of 'dims' array argument will not be modified by

this method. In this release of MPJ Express, all elements of 'dims' array are modified

without taking into account if they are zero or non-zero.

7. Request.Cancel(..) is not implemented in this release.

8. MPJ applications should not print more than 500 characters in one line. Some users may

use System.out.print(..) to print more than 500 characters. This is not a serious

problem, because printing 100 characters 5 times with System.out.println(..) will

have the same effect as printing 500 characters with one System.out.print(..)

9. Some users may see this exception while trying to start the mpjrun module. This can

happen when the users are trying to run mpjrun.bat script. The reason for this error is

that the mpjrun module cannot contact the daemon and it tries to clean up the resources it

has. In doing so, it tries to delete a file named 'mpjdev.conf' using File.deleteOnExit()

method. This method appears not to work on Windows possibly because of permission

issues.

Exception in thread "main" java.lang.RuntimeException: Another mpjrun module is

already running on this machine

at runtime.starter.MPJRun.(MPJRun.java:135)

at runtime.starter.MPJRun.main(MPJRun.java:925)

This issue can be resolved by deleting mpjdev.conf file. This file would be present in the

directory, where your main class or JAR file is present. So for example, if the users are

trying to run "-jar ../lib/test.jar", then this file would be present in ../lib directory.

10. The MPJ Express infrastructure does not deal with security. The MPJ Express daemons

could be a security concern, as these are Java applications listening on a port to execute

user-code. It is therefore recommended that the daemons run behind a suitably

configured firewall, which only listens to trusted machines. In a normal scenario, these

daemons would be running on the compute-nodes of a cluster, which are not accessible

to outside world. Alternatively, it is also possible to start MPJ Express processes

'manually', which could help avoid runtime daemons. In addition, each MPJ Express

process starts at least one server socket, and thus is assumed to be running on machine

with configured firewall. Most MPI implementations assume firewalls as protection

mechanism from the outside world

5 Contact and Support

For help and support, join and post on the MPJ Express mailing list

(http://www.lists.rdg.ac.uk/mailman/listinfo/mpj-user). Alternatively, you may also contact us

directly:

1. Aamir Shafi (aamir.shafi@seecs.edu.pk)

2. Bryan Carpenter (bryan.carpenter@port.ac.uk)

3. Mark Baker (http://acet.rdg.ac.uk/~mab)

http://www.lists.rdg.ac.uk/mailman/listinfo/mpj-user
mailto:aamir.shafi@seecs.edu.pk
mailto:bryan.carpenter@port.ac.uk
http://acet.rdg.ac.uk/~mab

6 Appendices

Appendix A: Running MPJ Express without the runtime (manually)

There are two fundamental ways of running MPJ Express applications. The first, and the

recommended way is using the MPJ Express runtime infrastructure, alternatively the second way

involves the 'manual' start-up of MPJ Express processes. We do not recommend starting

programs manually as normal procedure. This section documents the procedure for manual start-

up, mainly to allow developers the flexibility to create their own initiation mechanisms for MPJ

Express programs. The runmpj.sh script can be considered one example of such a mechanism.

1. cd mpj-user

2. This document is assuming mpj-user as the working directory for users. The name mpj-

user itself has no significance.

3. Write a configuration file called 'mpj.conf' as follows.

a. A typical configuration file that would be used to start two MPJ Express processes is

as follows. Note the names 'machine1' and 'machine2' would be replaced by

aliases/fully-qualified-names/ IP-addresses of the machines where you want to start

MPJ Express processes

 # Number of processes

 2

 # Protocol switch limit

 131072

 # Entry in the form of machinename@port@rank

 machine1@20000@0

 machine2@20000@1

b. The lines starting with '#' are comments. The first entry which is a number ('2'

above) represents total number of processes. The second entry, which is again a

number ('131072' above) is the protocol switch limit. At this message size, MPJ

Express changes its communication protocol from eager-send to rendezvous.

There are a couple of entries, one for each MPJ Express process, each in the form

of machine name (OR)IP@PORT_NUMBER@RANK. Using this, the users of

MPJ Express can control where each MPJ Express process runs, what server port

it uses, and what should be the rank of each process. The rank specified here

should exactly match the rank argument provided while manually starting MPJ

Express processes (using java command). When the users decide to run their code

using mpjrun, this file is generated programmatically.

c. Sample configuration files can be found in $MPJ_HOME/conf directory. If you wish

to start MPJ processes on localhost, see $MPJ_HOME/conf/local2.conf file.

d. Each MPJ process uses two ports. Thus, do not use consecutive ports if you are

trying to execute multiple MPJ Express processes on same node. A sample file for

running two MPJ Express processes on same machine would be

Number of processes

2

Protocol switch limit

131072

Entry in the form of machinename@port@rank

localhost@20000@0

localhost@20002@1

4. Running your MPJ Express program.

a. The script runmpj.sh requires password-less SSH access to machines listed in the

configuration file. This script will not work if your machines are not setup for

this. You may get some guidance here regarding setting up SSH so that no

password/passphrase is required at login. This is the only script in this software

which requires password-less access. An alternative to using runmpj.sh is the

manual start-up (using java command directly -- see directions below)

b. Running class files

runmpj.sh mpj.conf World

For all the machines listed in mpj.conf, login to each machine, change directory to
$MPJ_HOME

java -cp .:$MPJ_HOME/lib/mpj.jar World <rank> mpj.conf niodev

 The <rank> argument should be 0 for process 0 and 1 for process 1. This should

match to what has been written in configuration file (mpj.conf). Check the entry

format in the configuration file to be sure of the rank

c. Running JAR files

 runmpj.sh mpj.conf hello.jar

 Windows and Linux:

 For all the machines listed in mpj.conf, login to each machine

 java -jar hello.jar <rank> mpj.conf niodev

 The <rank> argument should be 0 for process 0 and 1 for process 1. This should

match to what has been written in configuration file (mpj.conf). Check the entry

format in the configuration file to be sure of the rank.

http://www.google.com/search?hl=en&lr=&safe=off&c2coff=1&q=setting+up+SSH+without+password&btnG=Search

d. Passing arguments to the JVM running MPJ Express program

Edit $MPJ_HOME/bin/runmpj.sh shell script to pass the arguments to the JVM.

e. Passing arguments to MPJ Express application.

Edit $MPJ_HOME/bin/runmpj.sh shell script to pass the arguments to the

application. MPI.Init(String[] args) returns a String array that contains user

specified arguments. If the user has specified two arguments, then MPI.Init(..)

returns an array which has length 2

Appendix B: Changing protocol limit switch

MPJ Express uses two communication protocols: the first is 'eager-send', which is used for

transferring small messages. The other protocol is rendezvous protocol useful for transferring

large messages. The default protocol switch limit is 128 KBytes. This can be changed prior to

execution in following ways depending on whether you are running processes manually or using

the runtime.

1. Running MPJ Express applications manually (without using runtime): The users may

edit configuration file (for e.g. $MPJ_HOME/conf/mpj2.conf) to change protocol switch

limit. Look at the comments in this configuration file. The second entry, which should be

131072 if you have not changed it, represents protocol switch limit

2. Running MPJ Express applications with the runtime: Use -psl <val> switch to change

the protocol switch limit

Appendix C: MPJ Express Testsuite

MPJ Express contains a comprehensive test suite to test the functionality of almost every MPI

function. This test suite consists mainly of mpiJava test cases, MPJ JGF benchmarks, and MPJ

microbenchmarks. The mpiJava test cases were originally developed by IBM and later translated

to Java. As this software follows the API of mpiJava, these test cases can be used with a little

modification. MPJ JGF benchmarks are developed and maintained by EPCC at the University of

Edingburgh. MPJ Express is redistributing these benchmarks as part of its test suite. The original

copyrights and license remain intact as can be seen in source-files of these benchmarks in

$MPJ_HOME/test/jgf_mpj_benchmarks. Further details about these benchmarks can be seen

here. MPJ Express also redistributes micro-benchmarks developed by Guillermo Taboada.

Further details about these benchmarks can be obtained here

http://www.epcc.ed.ac.uk/
http://www.epcc.ed.ac.uk/
http://www.epcc.ed.ac.uk/javagrande/mpj.html
http://www.des.udc.es/~gltaboada/
http://www.des.udc.es/~gltaboada/micro-bench/index.html

Compiling source code and Testsuite

1. Compiling MPJ Express source code

a. Being in $MPJ_HOME directory, execute ant

 Produces mpj.jar, daemon.jar, and starter.jar in lib directory

2. Compiling MPJ Express test-code

a. cd test

b. ant

This produces test.jar in lib directory.

Running Testsuite

The suite is located in $MPJ_HOME/tests directory. The test cases have been changed from their

original versions, in order to automate testing. TestSuite.java is the main class that calls each of

the test case present in this directory. The build.xml file present in test directory, compiles all test

cases, and places test.jar into the lib directory. By default, JGF MPJ benchmarks and MPJ micro-

benchmarks are disabled. Edit $MPJ_HOME/test/TestSuite.java to uncomment these tests and

execute them. Note, after changing TestSuite.java, you will have to recompile the testsuite by

executing 'ant' in test directory.

1. cd mpj-user

With Runtime

1. Write a machines file

2. mpjrun.sh -np 2 -jar $MPJ_HOME/lib/test.jar

Without Runtime

1. Write a configuration file called 'mpj.conf'. Further details about writing configuration

file and its format can be found here

a. Start the tests

runmpj.sh mpj.conf $MPJ_HOME/lib/test.jar

'runmpj.sh' requires password-less SSH access to machines in the configuration file.

To see how this can be done, look here

For all the machines listed in mpj.conf, login to each machine, type,

java -jar $MPJ_HOME/lib/test.jar <rank> mpj.conf niodev

http://www.google.com.pk/search?sourceid=chrome&ie=UTF-8&q=passwordless+authentication

The <rank> argument should be 0 for process 0 and 1 for process 1. This should match to

what has been written in configuration file (mpj.conf). Check the entry format in the

configuration file to be sure of the rank.

